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Vortex methods, based on the splitting into Euler and Stokes
operators, have been successfully adopted in numerical solutions
of three-dimensional Navier-Stokes equations in free-space. Here
we deal with their application to flows bounded by solid walls,
discussing in particular the boundary conditions for vorticity and
their approximation. In two dimensions this has been accomplished
by introducing a vortex sheet at the wall, determined by the local
slip-velocity, as an approximation of the vorticity source. For three-
dimensional flows, we analyze in the context of the Stokes substep
the integral equation for the vorticity source and its connection with
the creation algorithm adopted in vortex methods. The present
analysis leads to a formulation which shows the connection be-
tween the exact vorticity source at the wall and the discrete vorticity
creation operator adopted in the Chorin—Marsden formula. In partic-
ular, the slip velocity at the wall is identified as an approximate
solution of the integral equation for the vorticity source and the
corresponding error estimate is also discussed. Besides showing
the consistency of this approximation, we indicate a numerical pro-
cedure which provides a wall-generation of solenoidal vorticity. This
is a crucial issue for an accurate application of vortex methods to
three-dimensional flows. © 1996 Academic Press, Inc.

1. INTRODUCTION

In two-dimensional flows the mechanism of vorticity
generation at a solid boundary is conveniently described
in terms of a vortex sheet generated at the wall, which is
diffused by viscosity in the interior of the flow domain.
More specifically, for a given vorticity distribution, the
Biot-Savart law provides a velocity field which, in general,
violates the boundary conditions on both the normal and
the tangential component. A potential flow is then required
to enforce zero normal velocity. After this velocity compo-
nent is added, the resulting flow still presents a slip velocity
at the wall, which provides a vortex sheet having the exact
intensity to bring the fluid particles at rest with respect to
the solid boundary. In its turn, the vortex sheet, by diffus-
ing, introduces new vorticity in the flow field. This mecha-
nism, originally described by Lighthill [15] in physical
terms, has been extensively used in numerical solutions
of the incompressible Navier—Stokes equations for two-
dimensional flows (see, e.g., Koumoutsakos and Leonard
[14]), since Chorin introduced, in the context of vortex
methods, the operator splitting technique [8]. In fact, the
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Chorin-Marsden product formula [9], besides factoring
the convective and the diffusive components of the Navier—
Stokes equations, considers a creation operator to intro-
duce the concentrated vorticity layer at the wall which is
successively diffused into the flow field. Afterwards, Ben-
fatto and Pulvirenti provided a rigorous mathematical basis
for this procedure. In particular in a first paper [6], they
introduced the concept of a vorticity source at the wall,
whose intensity is to be determined by solving a suitable
integral equation. The integral equation reflects the nonlo-
cal nature of the boundary condition for a vorticity formu-
lation, as clearly pointed out by Quartapelle [16] in the
context of a different numerical approach. In a successive
paper [7] they show how, after introducing the local opera-
tor for the vorticity creation at the wall, the algorithm is
convergent to the Navier—Stokes solution, obtained with
the exact vorticity source.

In the present paper we study the generation by solid
walls in three-dimensional flows with particular attention
to the enforcement of wall boundary conditions in the
context of viscous vortex methods. This numerical proce-
dure, as in the two-dimensional case, requires the Navier—
Stokes operator to be factored into two successive steps,
one purely convective and the other purely diffusive, ac-
cording to the Euler and Stokes equation, respectively.
Although encouraging numerical results have been re-
cently produced, several technical difficulties emerge when
trying to prove the convergence of the splitting for three-
dimensional flows, due in part to the lack of an existence
theorem for the solution in the large of the Euler equations.
Since this point has been analyzed, at least for flows in
bounded domains, by Beale and Greengard in a recent
paper [4], we concentrate on the Stokes step and, in particu-
lar, on the approximation of the boundary conditions. Fol-
lowing Cottet [11], we deal with a semi-infinite domain
bounded by a planar surface. The simple geometry intro-
duces several nice features, such as the possibility to en-
force exactly part of the boundary conditions by consider-
ing a suitable extension of the solution in the whole space.

Let us denote by 7 the solid plane at x; = 0 and by
R3 the three-dimensional upper halfspace. The evolution
equation for the vorticity in a Stokes flow is then simply
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do _ vAw, x € Rj.
ot

(M

This equation requires suitable initial conditions, ey, to-
gether with Dirichlet boundary data

wl=h )
or Neumann boundary data

w|

ol = ©)

We assume, in particular, Dirichlet data for the normal
component of vorticity and Neumann data for the two
tangent components. With this choice 4, is directly inferred
from the velocity at the boundary, since h, = n -V X u
only involves derivatives in the two directions tangent to
7, and the projection f, of the Neumann data on the plane
corresponds to two unknown scalar functions. In any case
the complete set of boundary conditions do not follow
directly from the physical constraints on the corresponding
velocity field u, as discussed, among others, by Anderson
[1]. Actually the Stokes operator requires the vanishing of
both the normal and the tangential velocity component at
the solid boundary. Either of these conditions is easily
imposed directly on the velocity field which is related to the
vorticity through the Poincaré representation formula [3],

u*=—V*f (u~n)gdS+V*><J (n X u) gdS
(4)
+V*XJR+wng.
3

where the normal n is directed towards the interior of the
flow domain and g = 1/(4w|x — x*|) is the fundamental
solution of the operator —A.

In the limit as x* — 7, we obtain two different, although
equivalent, boundary integral equations, by projecting on
the normal and on the tangent plane, which allow us to
determine either component of the velocity in terms of
the other. The natural approach would be to consider the
one obtained by the projection on the tangent plane and
to enforce u - n = 0 at the wall, leaving the unknown n X
u to be expressed, via the integral equation, as a functional
of the vorticity field w. Typically, at this point, the no-slip
condition is violated for a generic vorticity field, unless the
further condition n X u = 0 is used to obtain a physically
acceptable solution. More specifically, a unique @ is de-
fined, once the boundary data are given, and, in the present
case, we would have to determine f, such that no-slip is
satisfied during the whole evolution. To this purpose, w
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may be found as a functional of the data f, through the
integral representation for the solution of Eq. (1),

e (WP e
® _Vjojﬂ<wan Fan)deTJrjR;woFodV, (5)

where F = 1/(47 v(t — 7))®Pe ™ *T/(40(t — 7)) denotes
the fundamental solution for the heat equation and Fj :=
F|.-o. In the limit as the field point approaches the bound-
ary, a vector integral equation is obtained which deter-
mines the Dirichlet boundary values h, from the corre-
sponding values f; and f; in terms of the known value #4,,.
Consequently both the vorticity field @ and the resulting
velocity u are themselves functionally dependent only on
f». After combining this general solution for @ with the
representation (4) we find a vector boundary integral equa-
tion for the unknown data f; by enforcing no-slip at the wall.

Even though the sketched procedure leads to a direct
physical interpretation of the wall vorticity creation as in-
troduced by Lighthill and Chorin, it is not convenient from
atheoretical point of view. In particular, normal derivatives
of the kernel functions appear in the equations, leading to
operators which are external to the plane 7. This drawback,
already discussed in [6] for two-dimensional flows, compli-
cates significantly the analysis of the resulting boundary
integral equation for the vorticity source.

For this reason we follow a different procedure which,
after a suitable extension of the field to the whole space,
involves tangential operators and does not require normal
derivatives. In particular, by this extension we obtain a
representation for velocity which enforces first n X u = 0
while the vorticity field is directly expressed in terms of
the unknown f; and of the initial vorticity e,. The vorticity
source is finally determined as the solution of the integral
equation following from the condition n - u = 0. In three
dimensions f; is a two-dimensional vector and we discuss
in the following how a scalar equation may determine this
vector unknown. In particular, we obtain in Section 2 the
relevant forms of the integral representations for velocity
and vorticity, respectively. We enforce then the scalar con-
straint # - n = 0 and we obtain in Section 3 the integral
equation for the vorticity production. The exact solution
of the equation is given in Section 4 and its approximation
in terms of the slip velocity is discussed in the successive
section 5, where an error estimate for the vorticity produc-
tion during a time step is provided. Finally we briefly dis-
cuss in the last section the relevance of the present results
to the more general Euler—Stokes splitting in three dimen-
sions. Whenever possible, technical details have been
avoided in the text by adding several appendices where
all the calculations and the major assumptions for the error
estimates are described.
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2. INTEGRAL REPRESENTATIONS IN THE
HALF-SPACE

When considering the upper half-space R3, we may di-
rectly obtain the boundary integral equation for the un-
known f,. To this aim, suitable representations for velocity
and vorticity are obtained by introducing the operator S,
which by acting on a generic vector produces its image
with respect to the plane ,

1 0 0
0 0 -1

For convenience a superscript + will denote in the follow-
ing a vector field in the physical domain R}, while a — will
be used for the corresponding one in the complementary
domain R3. In R3 we introduce the extension of the physi-
cal field u*,

u (x)=—Su*(Sx), xE€R;,
with corresponding vorticity

o =V Xu =S (Sx), xER;.

)

The combined field, # := u™ U u~, with vorticity @ :=
w” U w7, may be expressed in terms of the Poincare’
representation by

u*=—V*J' [u]-ngdS+V*><j n X [u]gdS

+V*XJR wgdV.

The jumps at 7 are accordingly defined as [u] = u* —
u~, and, by the extension S used to define u, it is easily
shown that

n-u]=0,
n X [u] =2(n* X u),
w(x) = o' (x) U So*(Sx).

Hence we are left with the only condition n X u = 0 to
be enforced at 7, and the above representation reduces to

u*=V*><jR3wng. (8)
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When x* is on the boundary 7, we find

1
% = % = — ) X ot
up = uj Zfﬂi prp—— [(x —x*) X o ]3dV,

ko=
uf =0,

T

ué*‘ﬁ =0,
where the symmetry properties of the field have been ex-
ploited to restrict the integration domain to the upper
halfspace. Hence representation (8) does satisfy the no-
slip, but in general implies a nonzero flux through the
boundary 7.

As concerning the vorticity, from the integral represen-
tation (5) for the fields w* and @~ we arrive at

w*:Vf;jﬂ([w]g—F[g—?])deT‘i‘f%woFodvv ©)

where the initial conditions are wy = wj U @y and the

jumps
) dw* w”
(0] = o — o, |2|=22] -2
g i on on | on |
reduce in the present case to
( 8(»1
0 on
[w]={ O LY D
on —
zwg‘w on
L 0.

By recalling the definition for A and f given in Section 2,
the representation (9), combined with the jump relations
and the condition A3 = h, = 0 (following from zero slip
velocity), yields

w*=—ZVJ;J‘an,,deT-i—fRawoFodV, (10)
where the initial conditions,
w(x) = wf(x) U Swf(Sx), (11)
give the zero normal component at the wall,
f 00 FadV]oe =0, (12)

as it follows from symmetry considerations.
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It is worth stressing that, in the above form, the normal
component f; does not appear explicitly. In fact, we used
the Dirichlet data 43 = 0 and f; may be evaluated a posteri-
ori from the representation, once the actual unknown, the
two-dimensional vector f;, has been determined. Conclud-
ing the section, we recall that only a single scalar condition,
namely u - n = 0, has to be still imposed to the field. How
to use this constraint to determine the vector unknown f;
is illustrated in the following section. We only note here,
the details are in Appendix D, that

Ve - @ (x%, 1) = —2Vj;d7f Vﬁ-f,,FdSJrjR V- @y FydV:
T 3

hence, for V - @, = 0, representation (10) yields a solenoi-
dal field, provided that V, - f, = 0.

3. BOUNDARY INTEGRAL EQUATION FOR THE
VORTICITY SOURCE

Equation (10) states that the field @ at time ¢ follows
from the diffusion of the initial field w, and from the
continuous local introduction of new vorticity provided by
the wall source f;. The intensity of the vector source of
vorticity has to be determined in such a way as to satisfy
zero normal velocity at the wall. The required equation is
obtained by simply introducing Eq. (10) into the represen-
tation (8) for the velocity field. By taking the limit as the
field point approaches 7 and by projecting along the normal
n, after enforcing u - n = 0, we obtain in fact a scalar
boundary integral equation,

n*-v*fo <2vf;LFf,,de7>ng
3 (13)
=n*-v*xjmgq&wolfodv)gdv,

for the vector unknown f;. Only the projection of w, onto
the plane 7 and tangential derivatives are actually involved
in the right-hand side of (13). By denoting by w;, (x) the
projection of the initial vorticity on the plane wall, after
introducing the position

a,,,:=f w, FydV,
IR3 0

we note, as a consequence of the introduced symmetry,
(6), that

o, (x) = @7 (x)(Sx).

Hence the integral on the right-hand side of Eq. (13),
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evaluated at boundary points, is exactly given by twice
the contribution arising from the upper halfspace. This
property is maintained under the action of the tangential
operator n* - V4 X (+), and, by considering the restriction
to the upper halfspace of the vorticity arising from the
diffusion of the initial field, we may simplify the writing
of the integral equation to enhance its interpretation,

- Vy X fR <Vf;anﬁ,deT>ng
3 (14)

=n*'V*XfR; <jR3w0F0dv>gdv.

We may note that Eq. (14) is substantially a three-dimen-
sional extension of the corresponding equation considered
by Benfatto and Pulvirenti in [6]. In fact they introduced
the use of the vorticity source to enforce the boundary
condition; however, the intrinsic connection between the
wall-source and the slip velocity was not entirely exploited.

To this purpose we may express the right-hand side of
(14) as

”*'V*XJR; <fR3w0F0dV>ng
(15)
=—n*~v*><j (n X us) gdS,

in terms of the slip velocity n X ug associated with the
field u that would originate from the diffusion of the initial
vorticity @y, according to the field extension (11). This
virtual field is requested to satisfy the boundary condition
ug - n = 0 and, in Chorin’s method, it provides the concen-
trated vortex sheet at the wall whose diffusion introduces
the new vorticity required for an approximate satisfaction
of the no-slip condition. By using this quantity we reexpress
Eq. (14) as

t
,,*.v*fo3<yfofﬂFﬁdeT>gdv
(16)
=—n*-V*><j (n X ug) gdS.

Equation (16) captures the essence of Chorin’s vorticity
creation concept. Since

t t
jo jTFf,,deH jofﬂdfa()@), 0,
it follows immediately that

VJ;f,, dr=~ —n X ug for veryshort times.  (17)
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Physically Eq. (17) indicates that the amount of vorticity
introduced in one time step is essentially given by the
vortex sheet with intensity —n X ug, a well-known and
largely discussed result for two-dimensional flows (see, e.g.,
Koumotsakos, Leonard, and Pepin [13]). In the following,
we discuss the nature of this ansarz which completely paral-
lels, in three dimensions, Chorin’s approximation for two-
dimensional flows. To discuss this point in further detail,
let us address first how the scalar equation (16) can handle
the vector unknown f;. To this purpose we adopt a Hodge-
type decomposition [3] for the two tangent vector fields
ug and f,,

Ve, + (n X V).4h,
Jo = (Vagpp+ (n X V)if) X n,

(18)
(19)

where the vector product with the normal n in the second
equation has been merely introduced for convenience. It
may be noted that the above positions completely corre-
spond, for the present flat boundary, to the Helmholtz
decomposition of a vector field in R? in terms of a scalar
and a vector potential. After applying the operator n
V X (+) to Eq. (18), we obtain the Laplace—Beltrami equa-
tion A, = n - V X (us), which in the present case reduces
to a Poisson equation on the plane 7. By the definition of
the virtual field ug and the result given in Eq. (12),

n-VXus=n-<ﬁR wOFOdV> =();
3 m

hence, from the Poisson equation we have ¢, = 0. Concern-
ing the wall source, as discussed in the previous section,
to obtain a solenoidal vorticity we must enforce V, - f, =
0. Consistently, from decomposition (19) we have Ay, =
0; hence ¢y = 0. We may state this intermediate result as
follows: both the wall source f, and the wall slip velocity
ug can be expressed in terms of irrotational vector fields
on the plane 7 with potential ¢, and ¢,, respectively. The
actual unknown, ¢y, has to be found from Eq. (16) rewrit-
ten as

t
n*.V*><f[R}v(foLF(nXVn)cf)dedT)ng
(20)
=n*-v*><j (n X V), b, g dS,

which is a scalar equation for a single scalar unknown. The
exact solution is achieved in the next section, as the basis
for a more precise discussion of Chorin’s approximation
and of the related error estimate, finally provided in Sec-
tion 5.

349

4. SOLUTION OF THE INTEGRAL EQUATION

We give here the exact solution of Eq. (20) for the wall
source. After introducing the notation

= [ ydr, @1)

we obtain the two-dimensional Fourier transform,
bp(&1) = L f dE DX, e X
JAS-H o w2 AN >

of the physical solution ®;, which may follow by inverse
transform. However, ®; is not reported here explicitly
since, as shown in the following section, the error related
to approximation (17) is better analyzed by considering
directly its Fourier transform.

We introduce the integration by parts,

[ FGet= Day(¥, 7y dr

= O(Y,0) 8(x) + [ DAY, DF(x, 1 = 7) d,

to be understood in the sense of distributions, where we
used F, = —F, and the subscripts t and rdenote differentia-
tion with respect to the corresponding time variable. After
introducing this result into Eq. (20) we obtain

-V X j vg(n X V,)0rdS + n* - Vs X e*

(22)
=%V, xj (n X V), ¢ g dS,

where

e e v siaen o

(23)
. J[Rﬂg(x”< —x)F,(x =Y, t— 7)dx.

The integral over R? is the three-dimensional convolution,
g * F;, which is readily Fourier transformed (in three di-
mensions) as (27)*28(k) - F,(k, t — 7). Here the transform
of the fundamental solution of the Laplace equation is
& = 1/((2m)®?k?) and for the time derivative of the free-
space Green’s function for the heat equation we have
F, = —vk®F5(k, t — 7) (the suffix 3 has been added to F to
recall that we are dealing with the three-dimensional fun-
damental solution). Hence

8(0) - (et = 1) = Byt — ),

(2 )(3/2)
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and by taking the inverse Fourier transform we find
gxF,=—vF(x* =Y, t — 7).
When this expression is introduced into Eq. (23),
t
e(x*, 1) = —,ﬂfﬂ dyjo dr(n X VY)Y, 7)
Bt =Y, t— 1),

after recalling that for x* € 7 we may express F; in terms
of the two-dimensional fundamental solution of the heat-

equation, F, = 1/(47rv(t — 7))e WYIMEDas By o=

1Varv(t — 1) Fo(x* — — 7), we obtain for e,

e(x* 1) = —vzf dYﬁ) dr (n X VDY, 7)

- Fy(x* —

1
Vany(t — 1)

Y, t— 7).

This is the form required to perform the successive steps
in the analysis of the integral equation (22). First, all the
terms appearing in the equation, when we ignore the time
integrations and the dependence on ¢ and 7, are of the kind

-V X j _dY(n X V)q(V)K(x* — Y).

Integrating by parts, after assuming the density g to suit-
ably vanish for large |Y|, we have

- VE X (% X V) f dY g(Y)K(x* — Y),

where we used n X VYK = —n* X V*K. The operator
acting on the surface integral corresponds to the Laplace—
Beltrami operator A,, which for the present flat geometry
corresponds to the Laplacian Ay:

A¥ j _dY q(Y)K(x* — ).

Hence, we may write the integral equation (22) as

¢t dr 1)
A*( * D+ ¢ F*CI)>: *( *—”>,
2 |8 f 0\/:( 2 f) g v (24)
x*em,
where ¢ = —3Vv/m and we denote by a * b the two-

dimensional convolution [, dY a(Y)b(x* — Y), with x* € 7.
To proceed further we take the two-dimensional Fourier
transform of Eq. (24),
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€ 2(©D,(£ 1) + clgP || b€ 7

\/—Fz(f t=
(25)

- lePae) 248D,
Since (Appendix A) we have

§(é) = 4 E §|

and

_e =),

F2(§ t— ’T)

from (25) we obtain the integral equation of the second
kind,

z e—v§2(t—f) (i)f(g’ T) — (Z;u(f, t), (26)

where ¢ = —V/m and £ = |£|. The corresponding solution,
which is obtained by Laplace transforms (see Appendix
B), may be written explicitly as

dy&0 =0+ Vel dr}"’“

vIgP [| drerte(~V/vlgl Vim ) 2 g 7,

(& 7)
27)

and the solution in physical variables may be obtained by
inverse Fourier transform.

Equation (27) gives <i>f in terms of the Fourier transform
of ¢,, the potential function for the slip velocity, us =
V.¢.. The structure of the exact solution already gives
good insight about the approximation of the boundary
conditions in terms of the slip velocity. We immediately
observe that the error is related to a suitable norm of
the difference VQJf ¢,, which is proportional to time
convolution integrals involving ¢,. A more complete error
analysis is performed in the next section.

5. THE WALL VORTEX SHEET AS AN
APPROXIMATION OF THE VORTICITY SOURCE

We are now in a position to obtain one of the basic results
of the paper, namely an estimate of the error introduced by
the procedure adopted in numerical methods, where the
approximate value given by the vortex sheet at the wall is
used, instead of solving for the unknown vorticity source.
We analyze first the case where the vortex sheet has an
arbitrary intensity, although subject to certain require-
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ments to be specified later. This is likely to be the relevant
condition at the first time step of a discrete method, if, as
usual, the vorticity field at ¢ = 0 violates the no-slip condi-
tion at the wall. Afterwards we consider the vortex sheet
as originating from the free-space diffusion of an initial
vorticity field satisfying both u-n = 0 and n X u = 0, as
it should be the usual case for successive time steps.

In particular, we are interested in estimating the error,
expressed in physical variables, using the L* norm,

E.:=|vn X V&= n XV, |1 = supxes i X VO —n X V|,

which is immediately related to the L'-norm of the corre-
sponding Fourier transforms by simply recalling the in-
equality for a function g,

lalle=c [, i) dg = cldl..

Using this inequality we have

[m X Voo, —n x V|- =c [, 1€l v~ bidg

= [, g | agePldue )
teo j; vdt JRZ d§|§|3|(z)u(§’ T)|’

where the last step follows from e "|&P*(t — 7) = 1, erfc
(—VV|&Vi— 7) =2, and Eq. (27). The two dimensionless
constants are ¢; = 1/Vwand ¢, = 2. If

[ dglePlb&n|=D,, [ dgleP|buEn].=Ds, (28)

where D,, D; > 0 denote two constants with different
physical dimensions, it follows that for t — 0

lvn X V@, — n X Vb, /|- = € (Vvt) = 2¢, D, Vot (29)

Inequality (29), where the symbol ¢ is assumed to have
suitable dimensions for consistency with the left-hand side,
gives the result we anticipated at the end of the previous
section, i.e., the convergence, although at a slow rate, of
the approximate solution, n X V¢,, to the exact one,
vn X V@, for arbitrary intensity of the wall vortex sheet.
The error estimate is valid for a generic initial condition,
in particular, the one involving a finite slip at the wall, as
it may occur at the first time step; see Appendix C. The
constant appearing in the error bound is readily estimated
in terms of the Fourier transform ¢, of the velocity poten-
tial at the wall (at the wall ug = V,¢,, even for rotational
flows; see Section 3). Consistently the present result may
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be of some practical use in the actual computations and also
at the successive steps, when the slip velocity is vanishingly
small. In these conditions the quantity D,, which is corre-
spondingly small, may be exploited to give a formal evalua-
tion of the accuracy. Let us consider, for instance, the case
when no-slip is exactly satisfied by the initial field at the
beginning of the step. In this case we have (Appendix C)

D, = 0(v1), D;= O(v7), (30)
where the proper dimensions are accounted for by the two
symbols ; hence we readily obtain for t — 0

t O(vr)vdr
OVt — 1)

+c, J; O(vryvdr = O((vt)*?);

||Vn X V(I)f_ n X V(;[)u”[‘Oc =

G

that is, the replacement of the exact vorticity source at the
wall with the vortex sheet n X ugleads to an error of order
C(*%). We finally mention that the asymptotic behavior
of the quantities D,, D; defined in (28) is strictly related
to smoothness properties of the initial field ey, as given by

Myi=sup. [ |€llon(& )l dg< Vd=0,..3. (32)

These assumptions require the vorticity field w, to have
certain derivatives in the directions parallel to the solid
wall which can be expressed in terms of the corresponding
Fourier transform. These derivatives in particular have to
be bounded in the L” norm for any distance z from the
wall. As a consequence the quantities D, and D5 defined
by (28) are finite or vanishing, as illustrated in details in
Appendix C. Hence the smoothness of @, involves corre-
sponding properties of the vortex sheet intensity. As a
result, the error is an order V¢ smaller than the strength
of the vortex sheet induced at the wall.

Let us recall the main achievements of this section in
terms of physical variables. When the slip condition is
violated initially, we have an (1) strength for the vortex
sheet induced at the wall after diffusion, and the error,
due to the approximate condition, is given by

t N
v jo £ dr— ug X nll= = My (V).

On the other hand, when the initial vorticity induces zero
velocity at the wall, the slip after diffusion is small. Under
these conditions the approximation introduces an error
given by

t .
v Jo Jfodt— ug X n|| = = M, O((vt)*?).
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For a generic time step we could have to consider a
residual effect of the finite vortex sheet which may occur,
as discussed before, at the initial time. We expect that the
error accumulation does not prevent the convergence of
a multistep procedure for the Stokes flow, although a rigor-
ous result on this point is beyond the scope of the pres-
ent paper.

Let us finally note that the results obtained in the present
section are, in a loose sense, essentially due to the nature
of the kernels appearing in Eq. (16). Actually, the elliptic
behavior induced by the kernel g, appearing in both sides,
is eliminated, while the kernel F of the heat equation is
highly localized for small times. As a consequence, the
local mechanism in terms of slip velocity is a consistent
approximation of the exact boundary conditions since it
provides the amount of vorticity to enforce the no-slip
condition at the solid wall in the limit of a vanishing
time step.

6. CONCLUDING REMARKS

The relevance of the present results, concerning the vor-
ticity generation in a Stokes flow, to the more general
context of the Euler—Stokes splitting for the three-dimen-
sional Navier—Stokes equations is here briefly analyzed.
The convergence of the splitting procedures in three di-
mensions, although restricted to bounded domains, has
been demonstrated in a recent paper [4] by Beale and
Greengard through the use of the velocity-pressure formu-
lation of the equations. Once the splitting has been estab-
lished, the development of a corresponding numerical algo-
rithm requires suitable definitions for the approximate
Euler and Stokes flows, as is easily accomplished in the
context of vortex methods. At least for flows in unbounded
domains, this approach presents several advantages.
Among others, computational resources are concentrated
where they are required, e.g., the rotational region, and
the far field behavior is exactly satisfied by the integral
representation for the velocity field. Concerning the invis-
cid step, we rely on the technical achievements gained by
the blob method [2, 5, 17] in the evolution analysis of free-
space vorticity structures, without any major complication
for the presence of the solid walls. When dealing with the
viscous step in three dimensions, instead, we face a new
difficulty for the definition of the proper approximation
for the vorticity boundary condition at the solid wall.

The present extension of the integral equation which
describes the solid wall as a source of vorticity establishes
a direct connection between the wall source and the slip
velocity at the wall. The exact solution of this equation
allows us to identify the slip at the wall as a consistent
approximation of the vorticity source. Hence, the boundary
conditions can be enforced, via a local procedure, as in
the original two-dimensional algorithm. When considering
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the splitting procedure for the single step, since the error
is an order V7 smaller than the induced vortex sheet and
the vortex sheet provided by the inviscid evolution must
vanish with the time step, we argue that the error estimate
should not be deteriorated. A complete proof of conver-
gence for the full multistep Euler—Stokes procedure is not
presently available for three dimensions.

As a further contribution of relevance for numerical
applications, we have discussed in the context of the pres-
ent analysis a proper way to obtain a solenoidal approxima-
tion of the wall source which would introduce divergence-
free vorticity in the field after diffusion of the vortex sheet.
This feature is highly recommended for a particle-based
approximation of the vorticity in three dimensions, where
the issue of maintaining an almost solenoidal discrete field
may be crucial for a reliable flow simulation.

APPENDIX A

We give the expression for the two-dimensional Fourier
transform of the fundamental solution of the three-dimen-
sional Laplace operator. Considering a generic point x €
R3, let us denote by X its projection onto 7 and by z its
distance from the plane 7. The two-dimensional Fourier
transform of g(Y — x) = 1/(4w |Y — x|), for Y € 7,

y 1 i
§x) =5 [ d¥e#Tg(¥ —x),

may be written as

—1£Y
—EX € _ fzg-XJ ~18,Y, f
ce fdeY Yo ce Rdee 2Y> Rle

e Y1

VYI+ (Yi+ )

where ¢ = 1/(87?). From the known integrals [12]

fLov

e*lfl Y,

Yi+ (Y3+27?)

=2Ko(&§VY3+ 7?)

and

el

&l

[, dvse e KeVYI+ ) =7
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where K, is the modified Bessel function of order zero,
we may obtain

1 eIl
5(E x) = — £X
B0 T
For X = 0 we have
. _ 1 efleg‘
g(gsx)\xzo - 47T |§| ) (33)
which, when z = 0, reduces to
11
4 =——— 4
g(g’x)\xzo 4,”_ |§| (3 )

APPENDIX B

We obtain the solution of Eq. (26), repeated here for
convenience,

B0 +elgl [, = e (g
- (3)
_ (& f)’ &= —wm,
14

for the Fourier transform ®;. To this purpose it is instru-
mental to consider the Laplace transform,

(B =(&p) = [ e rd(En

which, after use of the convolution theorem and recalling
that [12]

e | _ 12 —
‘Z[\/J =T1/2)(p + a) (r@1/2) = V),

yields Eq. (35) in the form

&)f(f,p) + Cv|§|(bf(§’p)\/g(p + V|§|2)71/2 — (»bu(f’p)

and, finally,
= _ b V£ ]
&P =7 [1 " Vp + 1|Ef - VlEl]

From this result, by using again the convolution theorem
and recalling that [12]

353

L (p2 +a) ] = — ae“erfc(aV),

1
vVt
so that

L (Vp + VEP - |EVY) ) = % o
+ V| glerfe(—| €V w),

we may obtain the solution of Eq. (35) as

dy(& 0 =2 &0+ Vgl [ drogi- L&
(36)

G(E1) = %t + Vv|glerfe(— £V v).

APPENDIX C

We show how, by using the assumptions (32) on the
initial vorticity field e@,, we obtain for

JRZ |§|d|d;u| df, d= 2, 3,

the time behavior indicated in (30). To this purpose, the
link between the field vorticity ensuing from the diffusion
of the initial field ew, and the wall vortex sheet is given by
Eq. (15). After accounting for the symmetry of the field
resulting from the diffusion of w, and considering that
(Section 5) n X ug = n X Vg, this equation may be recast
in the form

Y- 1 "
W= =G mVE X jRB <jR3 wOFOdV>gdx (x* € ),
(37)

where 7/ ¢, := n*-V* X [, g(n X V,)¢,dS = A¥ [, g,
dS. As anticipated in Section 7, for general initial condi-
tions, wy, the vortex sheet at the wall may be arbitrarily
strong. However, if the initial field is such to induce at
t = 0 a zero velocity at the wall,

Vv XJRS wogdx =0 forx*eEm, (38)

the slip at the boundary after diffusion of the initial field
is weak, in fact vanishing with ¢, as will be shown in the
following. We may exploit this condition on @, by rewriting
Eq. (37) as
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W b= —%nY'V,}”XJRS [([R woFOdV> —wo} gdx (YEm).
(39)

Here we note that only the components parallel to the
wall of both f r, @0 Fo dV and e, actually enter the equation.
Moreover, these components are even extensions, Eq. (7),
to the whole R? of the corresponding components of the
physical field, which is confined to the upper half-space.

From the Fourier transform of Eq. (39) we obtain, in fact,
information concerning the time behavior of the quantities
appearing in (30). In particular, the symbol of the operator
7" is readily estimated as |€|*c/|&| = c|€|, where £ is the
two-dimensional wave-vector. The factor |£[* arises from
A,, while the factor 1/|&| comes from the two-dimensional
Fourier transform of g; see Appendix A, Eq. (34). By
noting a contribution proportional to |£| at the right-hand
side of the equation originating from the operator n- VX,
we directly obtain the estimate

[pu(& Dl =c

jwz dYe €Y IR dz fRZ dXg(Y — x)

s

[ [ Frx = . D) dx’ = wo(x)}

where we denoted by X (and by X’ in the following) the
projection onto 7 of the point x (and x’ respectively), while
z (and z’) denotes the corresponding distance from the
plane, i.e., x = (X, 7). Since

FEx—-x,1=F(z—-72,nHLX-X,7),

we have

|J)u(§’ T)' =c

fRz dz dz'[g* (Fy* a)] Fi(z — 2/, 7)

k]

= [, dzl(g % an)]

where [g] is the two-dimensional Fourier transform other-
wise indicated as ¢ and a * b is the two-dimensional convo-
lution in the plane 7. By use of the convolution theorem,
the right-hand side of the equation may be expressed in
terms of the two-dimensional Fourier transforms g, Eq.
(33), &, and

E, = 1/Qn)e v (40)
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and we obtain

(& 1) =c

5 icvoo , T
[, dz 8&2) [ZW (&7 “

s

- FZ(§7 T) fR dZ’Fl(Z - ZI’ T)&)O(‘f? Z’):l

where the factor 1/(27) in the first term inside the brackets
follows from the convolution theorem. Since, as already
mentioned, only the components of the vorticity on the
plane 7, ey , are effective, Eq. (41) may be written as

o léllel

4]

[ azan@res @)

u(& Dl =c

f " dz @y (£ 2)

1
Vdmvr

. é' J " dge -2 i ell
0

Here the inner integral in the variable z, originally span-
ning over R, has been expressed as twice the corresponding
one with z ranging from zero to infinity, owing to the
symmetry property of both the field e (£ z') and the
kernels involved. We used the expressions (40) and (33)
for F, and &, respectively, and also introduced the explicit
form for Fi,

e*(Z*Z’)/(4VT)

Fi(z—z',7= Vvt

Finally, the constant 1/(872) has been absorbed into c.
From the known integral [12]

f: e~ Pe 71 gz = \'mVa erfc(Vap)e®

we may evaluate the inner integral over z as

ViV vre 2@ grilé=21Crm) e rfic ( Vour <|§| — Z—,>> .

2vT

Consequently, after renaming z' into z, the right-hand side
of (42) results as

e-lélld

J: ﬂv’on(f, z) W

[1 _ oG Derfe <\/,,_T <|§| - Ziw)ﬂ ‘ .

Cc
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If we now split the integral in two contribution, for z = 0
and for z = 0, respectively, and in the second one we
change the variable from z into —z, summing up the two
contributions finally yields

ef‘f‘z

|q§u(§’ T)| = f; dz |‘\‘I’0n(§, Z)| HB

5= 2 erte(Vir 161 2.))

— dekerfc (x/V_T <|§| + i))] .

(43)

2vr

Since for 7— 0 the two terms involving the complementary
error function approach 2 and 0, respectively, B vanishes
with 7. More precisely we have the asymptotic behavior
for small 7,

2
e? /(4v7)B
=~ c\Vp|&|eék,
V7
which allows us to write
e,ZZ/(4W)

B = cvr|&|elé

drvr

Substituting into (43), after recalling the expression for
F, yields

(Bu(& 7| = cvr || dzFi(z, il 2)

bl

where again we used symmetry to extend the integral to
R. From the result obtained we readily have

[, 1188 Dl = evr [ dzFi(z, ) [, dglétan (& 2)
= cvTsup; (fRZ |£["lé, (£ 2)] df) [, A a

= cvTSsup, <LR2 |§|d|&)oﬂ(§; Z)| df) s

which, under assumption (32) on &y, for d = 2, 3, finally
yields (30).

A procedure similar to the one illustrated above finally
allows us to obtain the result for the case of an initial field
which violates the no-slip condition at t = 0. Even in this
case Eq. (37) provides the required relation between ¢,
and wy. However, since under the present conditions Eq.
(38) does not hold, to show that (28) follows from assump-
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tions of the form (32) on the initial field w, we may directly
take the Fourier transform of Eq. (37). We do not report
the explicit computations, which proceed along lines simi-
lar to those illustrated in detail for the previous case and
we simply give the result that (28) follows from (32), now
withd = 0, 1, 2.

APPENDIX D

The vorticity, as the curl of velocity, is intrinsically a
solenoidal vector field. In the vorticity formulation, this
property is certainly preserved when considering exact so-
lutions. Instead, numerical approaches often provide vor-
ticity fields which are solenoidal only within a truncation
error. In the present case, we may show that the divergence
of the approximate vorticity is exactly zero. To this pur-
pose, let us consider first the exact equations. The diver-
gence of the field w follows from representation (10) as

Vo (X%, 1) = —2Vj;drjf,,-v*Fds+fR V- o FydV.

After recalling that V. F = —VF and that f,; = 0, integra-
tion by parts of the surface integral yields

Vo - (X%, 1) = —2vj;d7f V,,~f,,Fds+jR V- FydV,
” 3
(44)

where the density f, has been assumed to rapidly vanish
at infinity. Hence, for an initially solenoidal field e,, Eq.
(44) assures that V- @ = 0 when the surface divergence of
the source f; is zero. Actually, as discussed in Section 5,
this requirement corresponds to ¢ = 0 in the Hodge de-
composition (19), since we have

Vﬂ j;z' = An‘l’f’

When the slip velocity n X ugis used instead of the exact
source, for the divergence of the approximate vorticity
field we have

Ve wt(t,0) = —2v [ dr [ aiv,,-(n X ug) F dS
T (45)
+ JRB V- w(]F() dav.

Since (Section 5) ¢, = 0, from decomposition (18) for ug
we have

Vo-(nXus)=V,-(nXV,¢,) =0,
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and the approximate vorticity follows as an exact solenoi-
dal field.
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